

Role of PSUs in making Chemical Industry Atma Nirbhar

Novenmber 27, 2020

Organized by Indian Chemical News

Encouraging Modularization and Smart Design Solutions

Novenmber 27, 2020

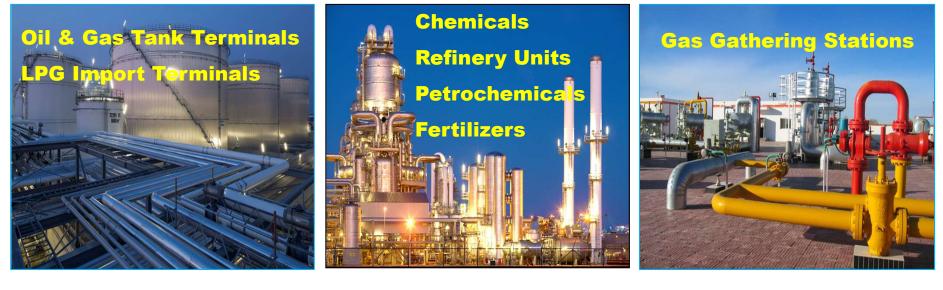
By Rakesh Verma CEO & ED, Simon India Limited

□ We are an Engineering Oriented EPC Company □ A Part of adventz Inception of JV between 'Simon Carves' and the 'Zuari Group' in the year 1995 □ Now a 100% subsidiary company of 'Adventz' Group (since 2004)

- US\$ 3.0 billion Group led by Mr. Saroj Kumar Poddar
- Comprises of 26 companies in various business verticals
- Significant presence in :
 - > Agriculture
 - Engineering
 - > Infrastructure
 - Real Estate
 - Consumer Durables
 - Financial & Insurance Services
- Largest Fertilizer Company in the private sector.

Mr. S. K. Poddar Group Chairman

GROUP HOLDINGS



BUSINESS SECTORS

SIMGN PSUs' contribution ... toward Atmanirbhar Bharat

PSUs are playing a very significant role in building Atmanirbhar Bharat through

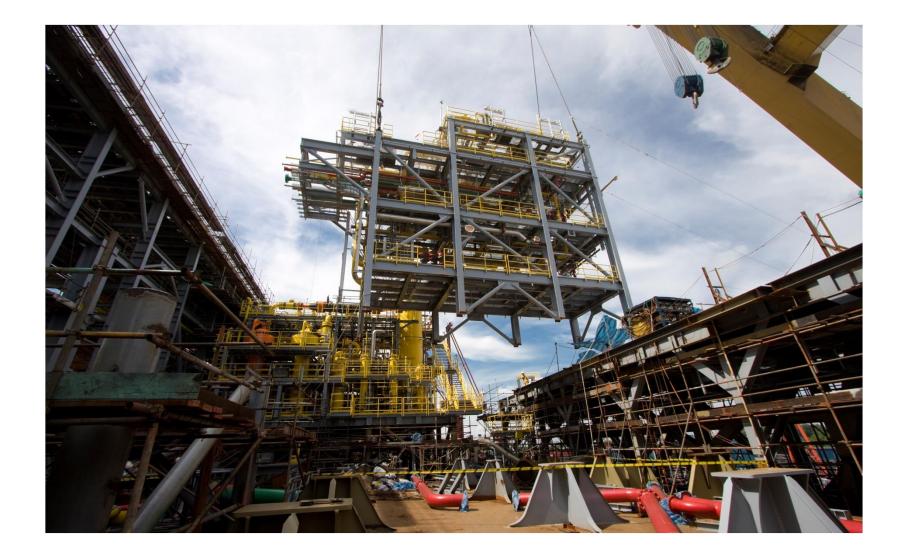
- Growth in strategic sectors and creating value hubs
- Huge and increasing Capital expenditure
- Strategic Global collaborations
- Investments and Focus on developing MSMEs

- Encouraging Technology & R&D, Innovation in designing and Project Life Cycle
- Enhanced CSR focus
- Improved profitability and efficiency through integration of operations with Global standard Safety, Energy efficiency, Human factor engineering, Green energy and working environment

- Funding Technology and R&D activities
- Relaxing projects Techno-commercial qualification norms thus allowing middle sized EPC companies and MSMEs
- Funding projects resulting into faster execution and wider participation
- Incentivize use of innovation & Technology
- Incentivize Safety, Energy efficiency, Human factor engineering, Green energy and working environment

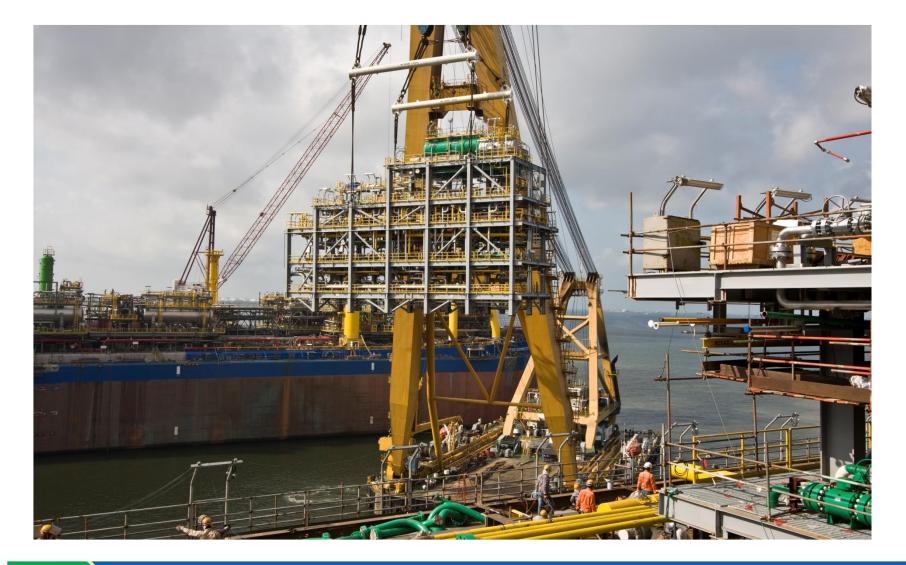
- Identifying strategic potential areas supporting self reliance while curbing imports
- A few examples in Fertilizer sector are production of Di-Calcium Phosphate (Animal Feed grade) and Sulphuric Acid

Modular Construction



- Faster fabrication / erection reduces overall construction time period
- Quality work due to better working conditions at Fabrication yard
- Lower labour cost
- No weather downtime
- Much lesser material wastage

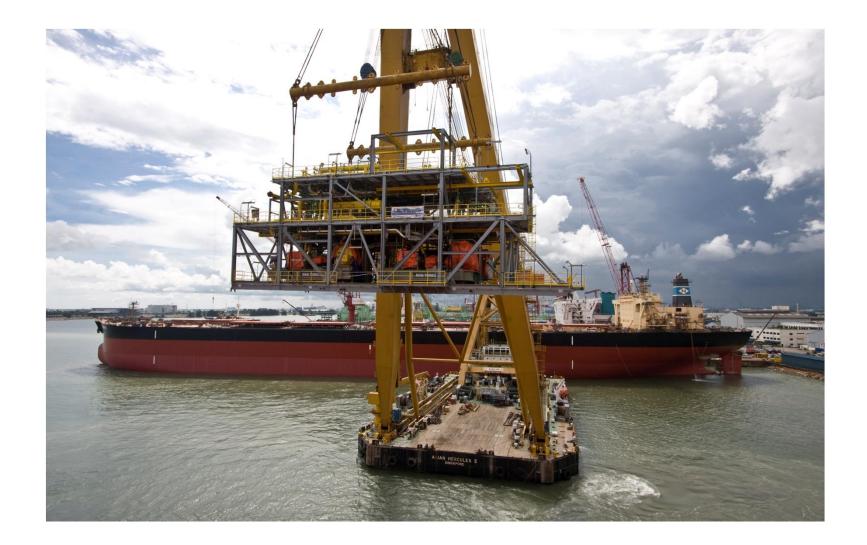
Gas Dehydration & Manifold Modules



Production Manifold

Central Pipe Racks

Boiler Module





Booster Gas Compressor Module

Reciprocating Gas Compression Modules

Copyright © 2018 | Simon India Ltd

HP Gas Compression Module

Oil Separation Module

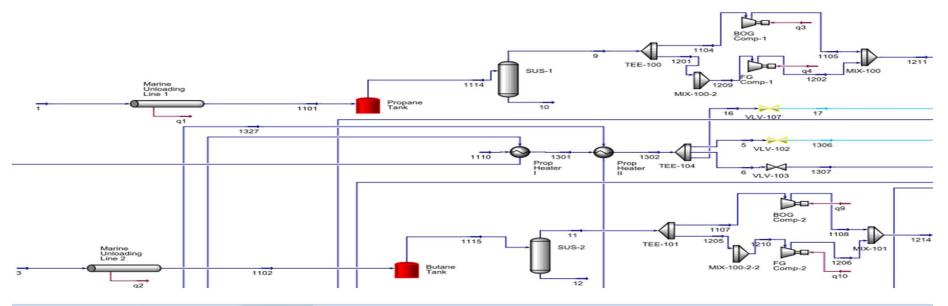
Chemical Injection Module

Oil Stabilization Module

Water Injection Module

Smart Design Solutions

Integration of Digital tools (Hysis) with Process Design for optimized solutions

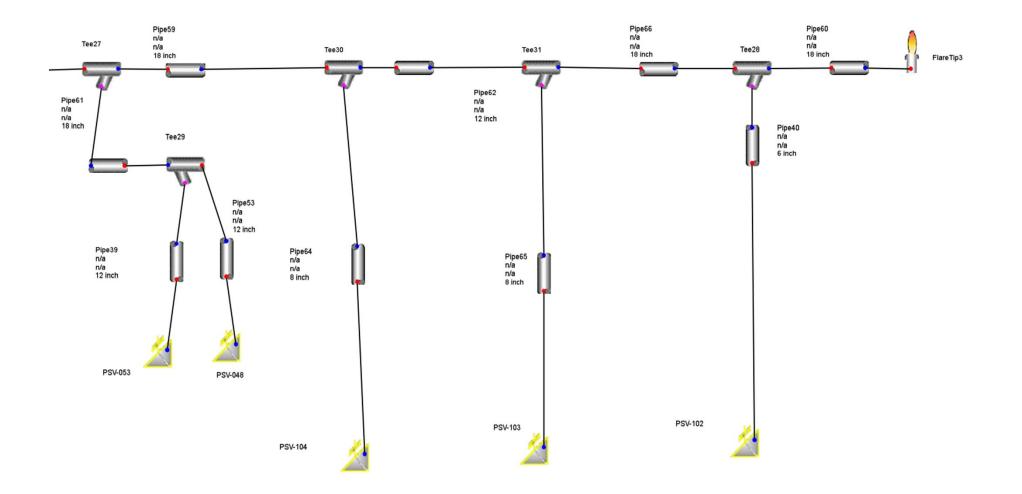


- PFD and Heat & Material Balance is the first activity carried out during detail engineering.
- HYSYS is used for carrying out the process modelling and simulation.
- Deliverables generated thereof are PFD and Heat & Material Balance Report
- Setting up the model and configuring the process model is time taking activity.
- Replicating the results manually can lead to errors on one hand and adds to man hours on the other hand.
- Flow scheme with proper stream numbers can be configured on HYSYS.
- PFD for attaching in Simulation Report can be extracted from HYSYS.
- Man hours for Heat and Material Balance report can be optimized by configuring the report format in HYSYS.
- Heat and Material Balance Report can be extracted directly from HYSYS.
- With minor changes/ modifications the error free report is available.

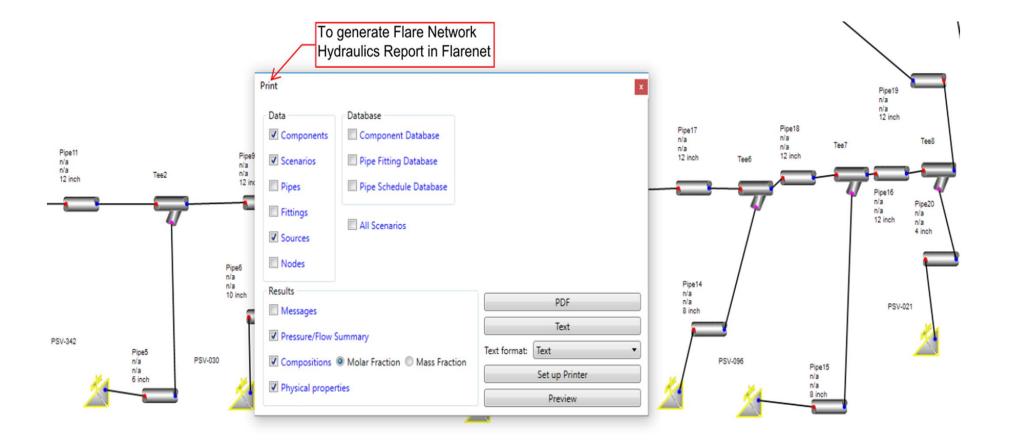
Copy Open Input	Save Save as	new Reset	Paste Send	to Excel/ASW	To export as EXCEL								
· (minimum)	Stream Product Stre	am Cooler H		nk Pump	Compressor V	alve Pipe Segmer	t BLOWDOWN Analy	ysis TPL1 - Material S	tream Separator	TPL2 - Material Stream	BLOWDOWN Vessel	BLOWDOWN Pipe	BL
	v	Ψ	Ÿ	v	v	v.	v	v	Y	v	Ψ	v	
Name	1	1101	3	1102	1114	1110	1115	1111	9	10	11	12	1104
Pressure [kg/cm2_g]	8	6.61738	8	6.605	0.07	23.6	0.07	23.6	0.07	0.07	0.07	0.07	1
Temperature [C]	-42.67	-42.6843	-2.9	-2.91831	-43.02	-44.27	-2.94	-4.17	-43.02	-43.02	-2.94	-2,94	1
Mass Flow [kg/h]	500000	500000	500000	500000	9244	230400	10274	153600	9244	0	10274	C	j
Std Ideal Liq Vol Flow [m3/h]	995.199	995.199	870.688	870.688	19.1057	458.588	17.9877	267.477	19.1057	0	17.9877	C)
Vapor / Phase Fraction	0	0	0	0	1	0	1	0	1	0	1	0	1
Molar Enthalpy [kJ/kgmole]	-126620	-126626	-154210	-154219	-105527	-126713	-132815	-154299	-105527	-126729	-132815	-154248	3
Utility Type													
Stream Price													
Stream Price Basis	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flow	Molar Flor
Cost Rate [Cost/s]													

Heat & Material Balance Simulation Report

		1101	1102	1104	1105	1107	1108	1110	1111	1112	1113	Stream	Unit	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213
From		Jetty	Jetty	Suction Separator-I	Boil-Off Compressor-I	Suction Separator-II	Boil-Off Compressor-II	Storage Tank-I	Storage Tank-II	Condensate Pump-I	Condensate Pump-II	From		Bullet-I Pump	Suction Separator-II	Flash Compressor-II	Condensate Pump-II	Bullet-II Pump	Stream No: 1201/1205	Stream No: 1201/1205	BOG-I & FG Compressor-I/II	Condenser-I	Condensate Pump-I
То		Storage Tank-I	Storage Tank-II	Boil-Off Compressor-I	Condenser-I	Boil-Off Compressor-II	Condenser-II	Propane Heater- I	Butane/ Propylene Heater-I	Boiler	Boiler	То		Propane Header	Flash Compressor-I/II	Condenser-I/II	Bullet-II	Propylene / Butane Header	Flash Compressor-I	Flash Compressor-II	Condenser-I	Condensate Receiver-I	Bullet-I / Boiler
Vapour Fraction		0.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	Vapour Fraction		0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00
Temperature	С	-42.68	-2.92	-43.02	95.00	-2.94	53.68	-44.27	-4.17	44.74	44.50	Temperature	C	44.82	-2.94	53.68	44.51	46.25	-43.02	-2.94	95.00	44.00	44.74
Pressure k	kg/cm2_g	8.00	8.00	0.07	20.00	0.07	4.50	23.60	23.60	24.20	9.70	Pressure	kg/cm2_g	23.30	0.07	4.50	4.90	24.00	0.07	0.07	20.00	19.80	24.20
Molar Flow k	kgmole/h	11444.44	8604.44	56.87	56.87	46.38	46.38	5273.59	2643.33	45.05	32.63	Molar Flow	kgmole/h	220.50	131.16	131.16	177.54	177.54	163.64	131.16	220.50	220.50	220.50
Mass Flow	kg/h	500000.00	500000.00	2384.00	2384.00	2684.00	2684.00	230400.00	153600.00	1888.33 (Note- 14)	1888.33 (Note- 14)	Mass Flow	kg/h	9244.00	7590.00	7590.00	10274.00	10274.00	6860.00	7590.00	9244.00	9244.00	9244.00
Mass Enthalpy	kcal/kg	-692.719	-634.306	-600.657	-552.304	-545.492	-524.482	-693.195	-634.643	-647.625	-610.487	Mass Enthalpy	kcal/kg	-646.532	-547.694	-527.466	-610.487	-609.262	-599.956	-547.694	-554.4091546	-647.937	-647.625
Vapour Phase												Vapour Phase											
Mass Flow	kg/h		***	2384.00	2384.00	2684.00	2684.00					Mass Flow	kg/h		7590.00	7590.00		***	6860.00	7590.00	9244.00		
Actual Volume Flow	m3/h			972.68	68.68	926.90	204.33					Actual Volume Flow	m3/h		2621.15	577.81			2798.90	2621.15	266.31		
Molecular Weight	<none></none>		***	41.92	41.92	57.87	57.87					Molecular Weight	<none></none>		57.87	57.87			41.92	57.87	41.92	***	
Mass Density	kg/m3			2.451	34.711	2.896	13.136					Mass Density	kg/m3		2.896	13.136			2.451	2.896	34.711		
Mass Heat Capacity	kcal/kg-C			0.3436	0.5390	0.3746	0.4550					Mass Heat Capacity	kcal/kg-C		0.3746	0.4550			0.3436	0.3746	0.5390		
Viscosity	cP			0.0064	0.0114	0.0066	0.0084		***			Viscosity	cP		0.0066	0.0084			0.0064	0.0066	0.0114		
Thermal Conductivity Ko	Kcal/m-hr-C			0.0103	0.0242	0.0112	0.0163					Thermal Conductivity	Kcal/m-hr-C		0.0112	0.0163			0.0103	0.0112	0.0242		
Z Factor	<none></none>			0.9671	0.8139	0.9624	0.8797					Z Factor	<none></none>		0.9624	0.8797			0.9671	0.9624	0.8139		
Cp/Cv (Gamma)	<none></none>			1.1808	1.2362	1.1157	1.1333					Cp/Cv (Gamma)	<none></none>		1.1157	1.1333			1.1808	1.1157	1.2362		
Liquid Phase												Liquid Phase											
Mass Flow	kg/h	500000.00	500000.00					230400.00	153600.00	1888.33	1888.33	Mass Flow	ka/h	10274.00			10274.00	10274.00				9244.00	9244.00
Liquid Volume Flow	m3/h	860.92	837.62				***	394.21	255.77	4.28	3.52	Liquid Volume Flow	m3/h	23.48			19.17	19.09				20.95	20.96
Mass Density	kg/m3	580.776	596.932					584.47	600.54	441.106	537.202	Mass Density	kg/m3	437.578			535.982	538.169				441.34	441.11
Mass Heat Capacity	kcal/kg-C	0.5217	0.5271					0.5161	0.5221	0.8130	0.6174	Mass Heat Capacity	kcal/kg-C	0.8284			0.6203	0.6137				0.8249	0.8130
Viscosity	cP	0.1958	0.2159				***	0.1998	0.2192	0.0737	0.1376	Viscosity	cP	0.0727			0.1374	0.1359				0.0741	0.0737
Thermal Conductivity Ko	Kcal/m-hr-C	0.1150	0.0857					0.1158	0.0861	0.0686	0.0712	Thermal Conductivity	Kcal/m-hr-C	0.0681			0.0712	0.0706				0.0689	0.0686
Surface Tension d	dyne/cm	15.35	14.36				***	15.5669	14.5060	3.9347	8.6971	Surface Tension	dyne/cm	3.8187			8.6960	8.4887				4.0034	3.9347
Composition												Composition	ajnajam				0.0200	0.1007					
Propane Mo	Mole fraction	0.97	0.01	0.84	0.84	0.02	0.02	0.97	0.01	0.84	0.02	Propane	Mole fraction	0.84	0.02	0.02	0.02	0.02	0.84	0.02	0.84	0.84	0.84
Ethane Mo	Mole fraction	0.03	0.00	0.16	0.16	0.00	0.00	0.03	0.00	0.16	0.00	Ethane	Mole fraction	0.16	0.00	0.02	0.02	0.02	0.16	0.02	0.16	0.16	0.16
n-Butane Mo	Mole fraction	0.00	0.58	0.00	0.00	0.48	0.48	0.00	0.58	0.00	0.48	n-Butane	Mole fraction	0.00	0.48	0.48	0.00	0.00	0.00	0.48	0.00	0.00	0.00
i-Butane Mo	Mole fraction	0.00	0.41	0.00	0.00	0.50	0.50	0.00	0.41	0.00	0.50	i-Butane	Mole fraction	0.00	0.50	0.50	0.50	0.50	0.00	0.40	0.00	0.00	0.00
n-Pentane Mo	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	n-Pentane	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Propene Mo	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Propene	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E-Mercaptan Mo	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	E-Mercaptan	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2O Mo	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	H2O	Mole fraction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00



- Flare Network hydraulics is a major detail engineering activity as FEED package always leaves it to be closed during detail engineering.
- Relief scenarios for the entire unit/plant are to be generated, relief loads for each scenario are to be calculated.
- Relief Valve datasheets are to be generated.
- Based on the relief load estimation flare network including the flare header and PSV tail pipes are to be sized.
- Layout of flare network is modeled in ASPEN Flare Analyzer.
- Various scenarios with constraints are built into the model.
- All the scenarios are run in the ASPEN Flare Analyzer and the optimum flare header / tail pipe sizes are arrived at.
- Flare header calculation report can be generated from ASPEN Flare Analyzer.
- Refer following slides for details.


Flare Network PFD

User Name :

Description :

Scenario :

Job Code : Project : Simon India Ltd. I-30027

Mundra LPG Terminal

FIRE-JETTY DRAIN POT

Fire-Jetty Drain Pot

Flare Network Simulation Report

Aspen Flare System Analyzer V10 - aspenONE

Source Data

Version 36.0.0.249

WE

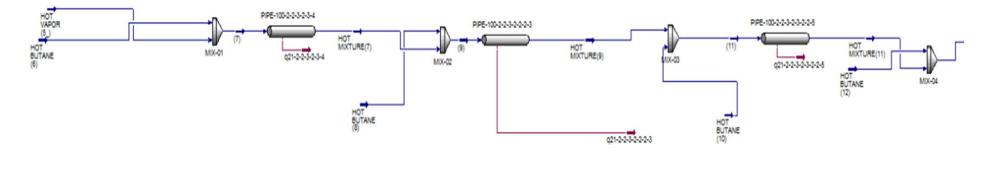
Aspen Flare System Analyzer V10 - aspenONE

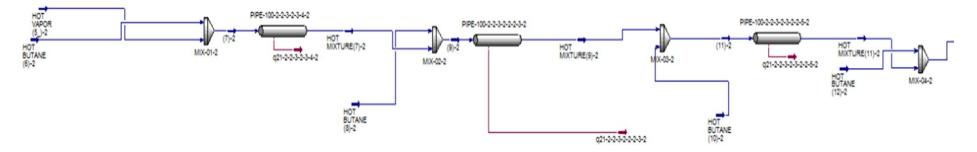
Version 36.0.0.249

User Name :	Simon India Ltd.
Job Code :	1-30027
Project :	Mundra LPG Terminal
Description :	Fire-Jetty Drain Pot
Scenario :	FIRE-JETTY DRAIN POT

Source	e Data			
and the File	Outlet Flenned Mehreel	DellafMaker	0.10.	Orifica

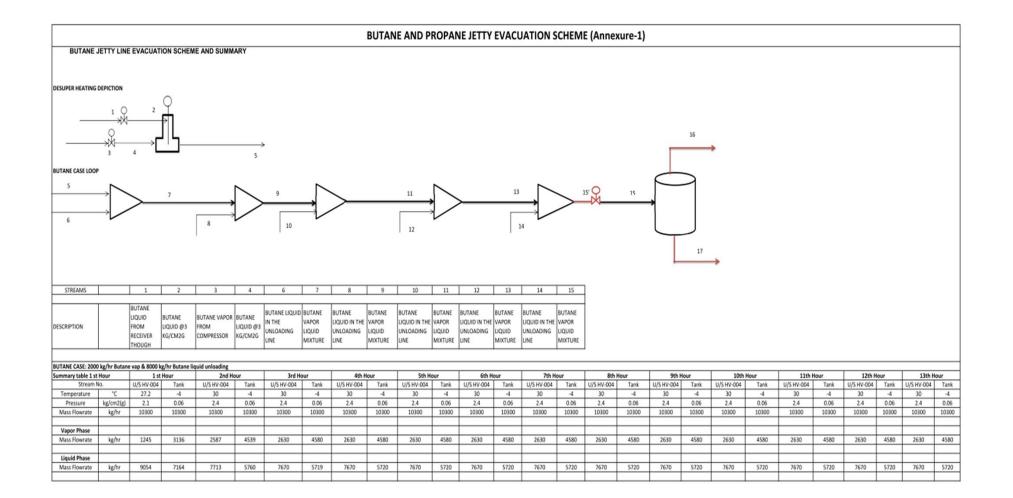
	Location	Outlet Pipe	Туре	Ignored	Inlet Pressure (bar)	Inlet Temp. Spec. (C)	Allowable Backpressure (bar)	Name	Outlet Temperature (C)	Mass Flow (kg/hr)	Flow (kg/hr)	Volumetric Flo (m3/hr)	Outlet Flange Diameter (mm)	Valves	Relief Valve Type	Orifice Area (mm2)	Orifice
PSV-061	EA-08 Shell	Pipe22	Relief Valve	Yes	42.75723	94.70	4.44558	PSV-061	-2.89	36305.0	42926.6			1	Conventional	2322.581	api_M
PSV-029	EA-05 Shell	Pipe25	Relief Valve	Yes	33.26441	80.20	3.66105	PSV-029	69.89	10369.0	10494.3			1	Conventional	830.323	api_J
PSV-026	FA-03	Pipe45	Relief Valve	Yes	5.16637	43.67	1.35648	PSV-026	38.11	3390.0	3548.7			1	Conventional	1185.806	api_K
PSV-027	EA-06 shell	Pipe14	Relief Valve	Yes	33.26441	80.16	3.66105	PSV-027	69.85	10507.0	14991.3			1	Conventional	1185.806	api_K
PSV-060	FA 04	Pipe37	Relief Valve	Yes	5.16637	43.67	5.00000	PSV-060	25.00	3390.0	3548.7			1	Conventional	1185.806	api_K
PSV-070	EA-07a tube	Pipe13	Relief Valve	Yes	42.75723	94.70	4.44558	PSV-070	-2.89	14685.0	15346.3	5.677e+001		1	Conventional	830.323	api_J
PSV-020	EA-08A shell	Pipe27	Relief Valve	Yes	33.26441	80.20	3.66105	PSV-020	-9.13	6400.0	6401.0			1	Conventional	506.452	api_H
PSV-095	EA-08A tube	Pipe26	Relief Valve	Yes	42.75723	87.12	4.44558	PSV-095	35.21	10266.0	14152.5			1	Conventional	830.323	api_J
PSV-021	EA-08A shell	Pipe20	Relief Valve	Yes	33.26441	80.20	3.66105	PSV-021	69.89	7565.0	10494.3			1	Conventional	830.323	api_J
PSV-096	EA-10A Tube side	Pipe15	Relief Valve	Yes	42.75723	87.12	4.44558	PSV-096	35.21	3443.0	5531.2	1.037e+001		1	Conventional	324.516	api_G
PSV-030	EA-04 SHELL	Pipe6	Relief Valve	Yes	25.82408	71.40	3.26878	PSV-030	27.83	19650.0	77599.6			1	Conventional	830.323	api_J
PSV-062	FA-06	Pipe33	Relief Valve	Yes	28.30516	125.40	3.26878	PSV-062	28.68	14731.0	13865.3	5.743e+001		1	Conventional	830.323	api_J
PSV-035	EA-03 SHELL	Pipe7	Relief Valve	Yes	25.82408	71.40	3.26878	PSV-035	27.83	19650.0	77599.6			1	Conventional	830.323	api_J
PSV-032	FA-06	Pipe67	Relief Valve	Yes	28.30516	125.40	3.26878	PSV-032	28.68	14731.0	21522.2	5.743e+001		1	Conventional	830.323	api_J
PSV-102	JETTY DRAIN POT	Pipe40	Relief Valve	No	42.54444	85.12	4.44558	PSV-102	-7.09	15817.0	19448.9	5.470e+001		1	Conventional	830.323	api_J
PSV 501	FG Comp. GB-03A	Pipe35	Relief Valve	Yes	25.82408	71.40	3.26878	PSV 501	27.83	8349.0	11817.8			1	Conventional	126.452	api_E
PSV-341	EA-11 SHELL SIDE	Pipe21	Relief Valve	Yes	42.75723	85.12	4.44558	PSV-341	-7.12	7258.0	9112.9			1	Conventional	506.452	api_H
PSV-342	FA-09	Pipe5	Relief Valve	Yes	42.75723	85.20	4.44558	PSV-342	38.79	1705.0	8932.8			1	Conventional	70.968	api_D
PSV 601	FG Comp. GB-04A	Pipe44	Relief Valve	Yes	25.92541	71.40	3.26878	PSV 601	27.83	8349.0	11856.4			1	Conventional	126.452	api_E
PSV 701	BOG Comp. GB-01A	Pipe31	Relief Valve	Yes	25.82408	69.10	3.26878	PSV 701	27.80	2952.0	6759.1			1	Conventional	70.968	api_D
PSV 801	BOG Comp. GB-02A	Pipe42	Relief Valve	Yes	25.82408	69.10	3.26878	PSV 801	27.80	2952.0	6759.1			1	Conventional	70.968	api_D
PSV-344	FA-09 TO BOILER	Pipe30	Relief Valve	Yes	9.74443	55.50	1.79778	PSV-344	43.66	4658.1	5017.4			1	Conventional	506.452	api_H
PSV-053	MOUNDED BULLET	Pipe39	Relief Valve	Yes	30.89112	130.30	3.46491	PSV-053	30.77	37994.0	37994.0	7.885e+002		1	Conventional	1840.645	api_L
PSV-048	MOUNDED BULLET	Pipe53	Relief Valve	Yes	30.67834	130.30	3.46491	PSV-048	30.77	61662.0	61662.0	2.743e+002		1	Conventional	7129.032	api_Q
PSV-104	BUTANE DRAIN POT	Pipe64	Relief Valve	Yes	3.94034	-3.79	1.25516	PSV-104	-9.41	7972.0	9321.3	2.1400.002		1	Conventional	2322.581	api_Q api_M
PSV-103	PROPANE DAIN POT	Pipe65	Relief Valve	Yes	3.94034	-0.24	1.25516	PSV-103	-5.46	8146.0	9383.0			1		2322.581	api_M api_M





- For one of the projects, the evacuation of product ship unloading lines is envisaged after completion of each unloading. Evacuation of unloading line using hot vapor is to be carried out.
- It was required to estimate the flow of hot vapors required for carrying out the Jetty line evacuation.
- A steady state simulation was run to estimate the flow of hot vapors to the line and the time required for evacuating the line considering the tank does not get pressurized during this operation.
- The entire unloading line was divided into small sections of 200 m length to simulate a condition of vapor pushing liquid hold up to the tank.
- Vapor was introduced in the first section and liquid (equal to the hold up in each 200 m section) was introduced at an equal rate in each section to replicate the plug flow like scenario.
- The model was run as 13 similar small models to simulate/estimate the hourly evacuation rate and flash gas generation. The model is depicted in slides below.

Jetty Unloading Line Evacuation Flow Scheme



SIMEN

India

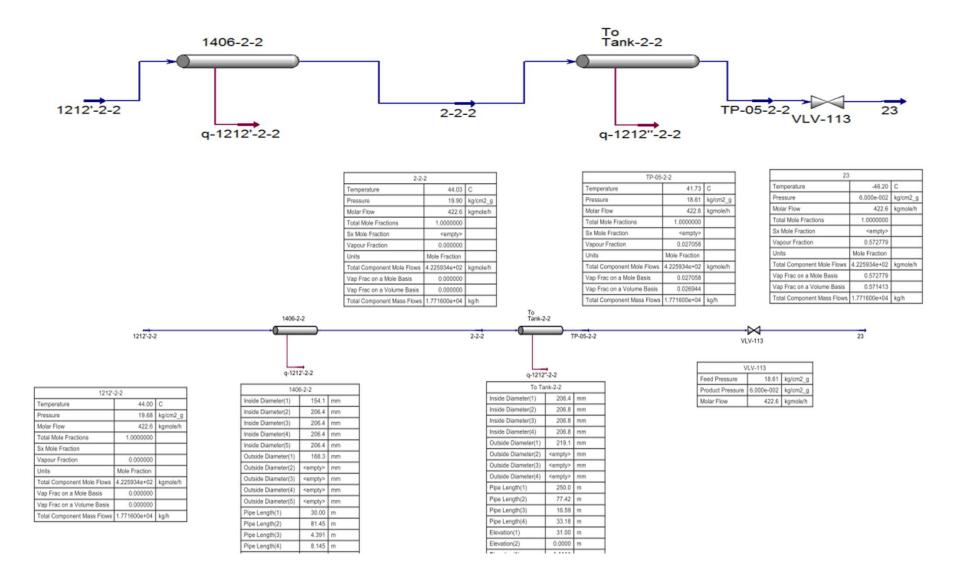


- Depressurization study is carried out during detail engineering to arrive at the minimum design metal temperature.
- One such report is attached in the slides below.
- Depressurization study report can be directly extracted from HYSYS and submitted for client review.

	VLV-100 ² Depressuring - Dynamics-1 (Flowsheet)
wsheet Case	e (Main) - Solver Active X Depressuring - Dynamics-2 Depressuring X +
sign Works	sheet Performance
rformance	Depressuring Summary
mmary	Initial Pressure [kg/cm. 20.90 Vapour Cv [USGPM(60F,1psi)] 15.00
p Charts	Final Pressure [kg/cm2 1.626
	Depressuring Time [see 000:15:0.00
	Temperature Profile © Vapour Phase Vessel Fluid Valve Outlet
	Initial [C] 47.26 14.76
	Final [C] -25.02 -28.04
	Minimum [C] -25.02 -28.04
	Flow Profile Vapour Liquid
	Initial Mass [kg] 368.4 522.3
	Initial Mass [kg] 300.4 322.5
	Initial Mass [kg] 368.4 522.3 Final Mass [kg] 47.06 303.1

SIMGN

India



- Hydraulics is carried out to optimize the line sizes, pressure drop across the line and flow profile.
- Hydraulics for single phase line is carried out with in-house software.
- Two phase lines are modeled in HYSYS.
- The piping routing with length, fittings, valves and elevation differences are fed into the HYSYS.
- The results / report can be extracted from HYSYS.
- Slug flow results can also be obtained from HYSYS and provided to piping for stress analysis.
- One such report is attached in the slides below.

2-Phase Line Hydraulics

2-Phase Line Slug Flow Analysis

Pipe Segment: To Tank-2-2

low Assurance	Slug Tool Calculatio	on Options		Slug Tool	Frequency Option	ns								
CO2 Corrosion	Translational Mod	el	Bendikson	Frequer	ncy Model	Hill &	Wood							
rosion	Velocity Paramete	r CO	<empty></empty>	Frequer	ncy	<e< td=""><td>mpty></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></e<>	mpty>							
ydrates	Velocity Paramete	r U0	<empty></empty>											
lug Analysis	Holdup Model		Gregory et al											
Vax Deposition	Holdup Parameter	r	<empty></empty>											
	Friction Factor Mo	dal	Colebrook											
	Slug Tool Results		colebrook	Do Si	ug Calculations									
		Status	Frequency [1/seconds]	Frequency Bound	ug Calculations Slug Length [m]	Bubble Length [m]	Film Holdup	Velocity [m/s]	Pressure Grad. [kPa/m]	Len Ratio S/B	Liquid Density [kg/m3]	Liquid Viscosity [cP]	Vapour Density [kg/m3]	Vapour Viscosit [cP]
	Slug Tool Results Position		Frequency	Frequency	Slug Length		Film Holdup			Len Ratio S/B				Vapour Viscosit [cP]
	Slug Tool Results Position [m]	Status	Frequency	Frequency Bound	Slug Length		Film Holdup 0.6783			Len Ratio S/B 296.8	[kg/m3]	[cP]	[kg/m3]	[cP]
	Slug Tool Results Position [m] 0.0000	Status Single Ph	Frequency [1/seconds]	Frequency Bound	Slug Length [m]	[m]		[m/s]	[kPa/m]		[kg/m3] 441.3	[cP] 7.403e-002	[kg/m3] 42.90	[cP]
	Slug Tool Results Position [m] 0.0000 50.00	Status Single Ph Slug Flow	Frequency [1/seconds] 1.122e-002	Frequency Bound - -	Slug Length [m] 105.1	(m) 0.3539	0.6783	[m/s] 1.179	[kPa/m] 0.5333	296.8	[kg/m3] 441.3 441.6	[cP] 7.403e-002 7.416e-002	[kg/m3] 42.90 42.29	[cP] 1.029e-00 1.026e-00
	Slug Tool Results Position [m] 0.0000 50.00 100.0	Status Single Ph Slug Flow Slug Flow	Frequency [1/seconds] 1.122e-002 1.153e-002	Frequency Bound - - -	Slug Length [m] 105.1 100.9	[m] 0.3539 3.235 5.623	0.6783 0.3925	[m/s] 1.179 1.199	[kPa/m] 0.5333 0.5258	296.8 31.18	[kg/m3] 441.3 441.6 442.8	[cP] 7.403e-002 7.416e-002 7.460e-002	[kg/m3] 42.90 42.29 41.67	[cP]

roject : Mundra LPG Termi								2321-E-BOP-GEN-DP-R-E-010
Document Title: Hydraulic S	ummary Report						Revision No.: 0	2
		Hydrau	ılic Repo	rt for	Cond	ensate receiver to Sto	rage Ta	ank 🛆
Owner	:		MLTPL			Job No.	:	2321
Employer	:		-			Location	:	Mundra
.oop	:		BOG/ Flash Gas (Condensate	receiver to \$	Storage Tank		
HLL	FA-05/06 1050 mm 400 mm A					31000 mm		C 2000-FB-01/02
6200 mm		Line size	ΔP/100m bar (For Max.Flow)	Velocity m's (For Max. Flow)	8* Estimated Equivalent Length (meter)	Description		Maximum case
	inches	Line size	ΔP/100m bar	Velocity m/s (For Max.	Estimated Equivalent Length	Description		Inlet Pressure
Line No.			ΔP/100m bar	Velocity m/s (For Max.	Estimated Equivalent Length	Description	ΔP kg/cm2	
			ΔP/100m bar	Velocity m/s (For Max.	Estimated Equivalent Length	Description BOG / FG Condensate Receiver (Source) Saturation Condition @ 44 deg C (EL - 6.5 m)		Inlet Pressure
Line No.			ΔP/100m bar	Velocity m/s (For Max.	Estimated Equivalent Length	BOG / FG Condensate Receiver (Source)		iniet Pressure kg/cm2(g)
Line No.	inches	SCH / THK (mm)	ΔP/100m bar (For Max.Flow)	Velocity m/s (For Max. Flow)	Estimated Equivalent Length (mster)	BOG / FG Condensate Receiver (Source) Saturation Condition @ 44 deg C (EL - 6.5 m) Line loss A-B (including static gain) Upstream of Control Valve	kg/cm2	Inlet Pressure kg/cm2(g) 19.68
Line No.	inches 6	SCH / THK (mm)	ΔΡ/100m bar (For Max.Flow) 	Velocity m/s (For Max, Flow)	Estimated Equivalent Length (meter) 156	Description BOG / FG Condensate Receiver (Source) Saturation Condition @ 44 deg C (EL - 6.5 m) Line loss A-B (including static gain) Upstream of Control Valve One Phase Flow Line loss B- C (including static loss) Downstream of Control Valve	-0.220	Inlet Pressure kg/cm2(g) 19.68 19.68
Line No.	inches 6	SCH / THK (mm)	ΔΡ/100m bar (For Max.Flow) 	Velocity m/s (For Max, Flow)	Estimated Equivalent Length (meter) 156	Description BOG / FG Condensate Receiver (Source) Saturation Condition @ 44 deg C (EL - 6.5 m) Line loss A-B (including static gain) Upstream of Control Valve One Phase Flow Line loss B- C (including static loss) Downstream of Control Valve Two Phase Flow	-0.220	Inlet Pressure kg/cm2(g) 19.68 19.68 19.68

