LG Chem develops new material to suppress thermal runaway
Battery

LG Chem develops new material to suppress thermal runaway

Preventing battery fires at the early stage

  • By ICN Bureau | October 01, 2024

LG Chem announced that its Platform Technology R&D team, under the CTO division, has developed a temperature-responsive Safety Reinforced Layer (SRL), a material designed to suppress thermal runaway. In collaboration with Professor Lee Minah’s team from the Department of Battery Science at POSTECH, the material was analyzed, while the safety verification was conducted in partnership with LG Energy Solution. The research findings were published online in the September edition of Nature Communications, one of the world’s leading scientific journals.

The thermal runaway suppression material developed by LG Chem is a composite material that changes its electrical resistance based on temperature, acting as a “fuse” that blocks the flow of electricity in the early stages of overheating.

This thermal runaway suppression material is highly responsive to temperature, with its electrical resistance increasing by 5,000 ohms (Ω) for every 1°C rise in temperature. The material’s maximum resistance is over 1,000 times higher than at normal temperatures, and it also features reversibility, meaning the resistance decreases and returns to its original state, allowing the current to flow normally again once the temperature drops.

Thermal runaway, a leading cause of electric vehicle battery fires, occurs when the cathode and anode inside the battery unintentionally come into direct contact, causing a short circuit and generating heat. Within seconds, the temperature can rise to nearly 1,000°C, leading to a fire. The thermal runaway suppression material is expected to be effective in preventing fires by quickly blocking the reaction path at the early stages of overheating.

LG Chem has completed safety verification tests for the thermal runaway suppression material in mobile batteries and plans to continue safety testing for large-capacity electric vehicle batteries through next year.

Lee Jong-gu, CTO of LG Chem, stated, “This is a tangible research achievement that can be applied to mass production in a short period of time. We will enhance safety technology to ensure customers can use electric vehicles with confidence and contribute to strengthening our competitiveness in the battery market.”

Other Related stories

Startups

Chemical

Petrochemical

Energy

Digitization